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The Mathematics of Number Puzzles Section 1 – Sudoku

※ Sudoku

1.1 Shidoku – Smaller 4× 4 Grids

To begin, we shall consider the filling-in of a Shidoku grid – a variation of the standard Sudoku
grid of dimensions 4 × 4, which is populated in the same fashion as a 9 × 9 Sudoku grid, but
using only the numbers 1− 4.

Figure 1.1: An empty 4×4 Shidoku grid – divided
into four blocks of four cells.

1 2 3 4
3 4 1 2

2 3 4 1
4 1 2 3

Figure 1.2: An example of a filled-in Shidoku
grid.

1.1.1 Enumeration

In finding the number of valid completions of such a grid, we begin by filling one 2 × 2 block
of the grid, before completing one row of the horizontally adjacent block and one column of the
vertically adjacent block – and then by considering the final block.

We have that there are four possible entries for each block (the numbers 1, 2, 3 and 4), so there
are four factorial possible ways to populate the first block we choose to complete. That is, there
are 4! = 24 possible numberings of the blue dots in figure 1.3, below.

• • • •
• •
•
•

Figure 1.3: A Shidoku grid labelled for explanation of populating.

Furthermore, as two of the possible numbers in row and column 1 respectively have been used
to fill the blue spaces – there are two ways to number the red dots and two ways to number the
green dots for each numbering of the blue dots. Hence, thus far, there are 4!× 2× 2 = 96 ways
to number the cells occupied by coloured dots in figure 1.3.

Now, we must move on to numbering the fourth block (the bottom-right block in figure 1.3).
An observation to be made is that whatever number occupies the fourth cell of the first block
must also occupy one of each of the green and red dots – and so this number only has one
possible position in the fourth block. For example, in figure 1.2, the fourth cell of the first block
is occupied by the number 4. It thus appears in the position of one of each of the red and green
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The Mathematics of Number Puzzles 1.1 Shidoku – Smaller 4× 4 Grids

dots respectively – in this example, it appears in the third cell of the third block and the second
cell of the second block. This means that in the fourth block, the number 4 cannot possibly
appear in the fourth row or column – as the 4s of these appear in blocks two and three. Hence,
the four must appear in cell one of block four.

With one of the four numbers filled in the fourth block, there are three remaining ways to
complete the numbering of the rest of that block, based on the restrictions of number placement
given by the partial numbering of blocks two and three. All three of these place the number
which takes the top-left position of the first block in different positions of the fourth block, and
the remaining two numbers can only take one valid place for each placement of this number.
This leaves the remaining cells of blocks two and three to be filled in – and there is always only
one possible entry left to fill each of these cells as they are all members of a row or column which
contains each of the other possible numbers.

Thus, the numbering of the Shidoku grid is completed and we shall now consider how many
possibilities there are from this information. We had 4! = 24 ways to populate the first block,
2 ways to fill in the remaining cells in each of the first row and column respectively for each of
the numberings of the first block, 3 ways to number the fourth block per numbering of the first
block and first row and column, and a single way to complete the numbering of the grid from
here. So, there are

4!× 2× 2× 3× 1 = 24× 2× 2× 3

= 288 possible filled grids.

1.1.2 Symmetries

For some, leaving it at 288 may suffice, however – for others – it is common to consider results
from within group theory to reduce the number of filled grids based on the symmetries of each
grid. For example, the two grids shown in figures 1.4 and 1.5 may be considered “essentially the
same” as they are symmetries of one another by a 180◦ flip across the vertical centre axis.

4 3 2 1
2 1 4 3

1 4 3 2
3 2 1 4

Figure 1.4: A filled Shidoku grid, “essentially
similar” to that in 1.5 by a flip over the vertical
centre axis.

1 2 3 4
3 4 1 2

2 3 4 1
4 1 2 3

Figure 1.5: A filled Shidoku grid, “essentially
similar” to that in 1.4 by a flip over the vertical
centre axis.

In fact, the symmetries of a Shidoku grid (and also a standard 9 × 9 Sudoku grid, for that
matter), go far beyond those of a square, defined by flips and rotations. Before we go on to look
at the symmetries of a Shidoku grid, though, we shall give some definitions.

Definition 1.1. A band is a collection of
√
n horizontally adjacent blocks in an n× n Sudoku
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The Mathematics of Number Puzzles 1.1 Shidoku – Smaller 4× 4 Grids

grid, constructed of n blocks. In a Shidoku grid, there are two bands (top and bottom), each
containing two blocks (left and right).

Definition 1.2. A pillar is a collection of
√
n vertically adjacent blocks in an n × n Sudoku

grid, constructed of n blocks. In a Shidoku grid, there are two pillars (left and right), each
containing two blocks (top and bottom).

Now, with these definitions, we may go on to define the symmetries of a Sudoku grid of any size
(including the Shidoku grid).

Definition 1.3 (Rosenhouse and Taalman, 2011). The symmetries of a Sudoku grid of any size
are given by:

• Relabelling of digits.

• Any rotation by 90◦, 180◦, 270◦, or reflection of 180◦ across any of the horizontal, vertical,
or diagonal axes (as in the dihedral group D4).

• Permuting the rows in a band.

• Permuting the columns in a pillar.

• Permuting the bands.

• Permuting the pillars.

• Any combinations thereof.

If two symmetries are essentially the same (symmetries of each other by the above criteria),
then they are considered to be the same numbering. In order to reduce our 288 filled grids down
to the number of essentially different filled grids, we must consider some definitions and results
from group theory.

Definition 1.4 (Cameron, 2008). A group is a set G with a binary operation ◦ satisfying the
following laws:

(G0) Closure Law: For all g, h ∈ G, g ◦ h ∈ G.

(G1) Associative Law: g ◦ (h ◦ k) = (g ◦ h) ◦ k for all g, h, k ∈ G.

(G2) Identity Law: There exists e ∈ G such that g ◦ e = e ◦ g = g for all g ∈ G.

(G3) Inverse Law: For all g ∈ G, ∃h ∈ G with g ◦ h = h ◦ g = e.

Definition 1.5. An action of a group G on a set X is a function µ : G×X → X (with µ(g, x)
often shortened to g · x), which satisfies the following axioms:

(A1) e · x = x (Identity)

(A2) g · (h · x) = (gh) · x (Compatibility).
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The Mathematics of Number Puzzles 1.1 Shidoku – Smaller 4× 4 Grids

for all g, h ∈ G and x ∈ X.

We say G acts on X, and denote this Gy X.

Definition 1.6 (Jin, 2018). The orbit G.x of an element x ∈ X is the set of elements in X

which can be reached from x by the action of some g ∈ G. That is, the set of all possible results
of transforming an element x.

G.x = {g.x : g ∈ G}.

The set of all orbits of X is denoted X/G.

Definition 1.7 (Jin, 2018). For an element g ∈ G, a fixed point of X is an element x ∈ X such
that g.x = x. That is, x is unchanged by the group action. The elements of X fixed by the
action of g ∈ G are represented by Xg – so there are |Xg| elements x ∈ X which are fixed by
the action of g ∈ G.

Theorem 1.8 (Burnside’s Lemma, as stated by Jin, 2018). For a finite group G acting on a set
X, the number of orbits of X is equal to the sum of the number of elements fixed by g for every
g ∈ G divided by the cardinality of G. That is:

|X/G| = 1

|G|
∑
g∈G
|Xg|.

In the case of Shidoku grids, our set X is the set of 288 possible grids, and the symmetry group
G is the set of symmetries as defined in Definition 1.3. G acts on X. Considering all possible
combinations of these symmetries, there are 128 in total. That is, |G| = 128. Thus, through
application of Burnside’s Lemma (1.8), we have that the number of essentially different filled
Shidoku grids is given by 1

128

∑
g∈G |Xg|.

Through brute force computations, Elizabeth Arnold and Stephen Lucas (cited in Rosenhouse
and Taalman, 2011) discovered that of the 128 symmetries, 56 fix no grids in X, 48 fix two
grids, 9 fix four, 4 fix six, 6 fix eight, 4 fix ten and 1 fixes twelve. Substituting these values into
Burnside’s Lemma (1.8), we have:

1

128
× ((56× 0) + (48× 2) + (9× 4) + (4× 6) + (6× 8) + (4× 10) + (1× 12)) = 2.

Hence, we have that there are just two essentially different Shidoku grid completions up to
symmetry:

1 2 3 4
3 4 1 2

2 1 4 3
4 3 2 1

1 2 3 4
3 4 1 2

2 3 4 1
4 1 2 3

That is, each of the 288 possible Shidoku grids are in the orbit of exactly one the grids above
– and both are in different orbits, so cannot be reached from each other by the action of any
g ∈ G – as can be verified in GAP, using the code shown in Appendix A.
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The Mathematics of Number Puzzles 1.2 The Standard Size 9× 9 Grid

B1 B2 B3

B4 B5 B6

B7 B8 B9

Figure 1.6: An empty 9×9 Sudoku grid with block
labels – divided into nine blocks of nine cells.

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6

2 3 1 5 6 4 8 9 7
5 6 4 8 9 7 2 3 1
8 9 7 2 3 1 5 6 4

3 1 2 6 4 5 9 7 8
6 4 5 9 7 8 3 1 2
9 7 8 3 1 2 6 4 5

Figure 1.7: An example of a fully numbered Su-
doku grid.

1.2 The Standard Size 9× 9 Grid

The more popular standard-sized Sudoku grid is 9 × 9 in dimension, made up of 9 blocks of
9 cells, arranged into 3 × 3 grids (Figures 1.6 and 1.7). This is filled-in with numbers 1 − 9

appearing exactly once in each block, row and column respectively.

Notation 1.9. We shall refer to the blocks of a Sudoku grid as Bx, where x is the block number
as defined in Figure 1.6. For example, the bottom-right block shall be denoted B9.

1.2.1 Enumeration

Much like with the 4 × 4 Shidoku grid, the typical method of counting possible numberings of
a Sudoku grid begins by considering a first block and stemming out from this.

Starting with block B1, there are 9! = 362880 possible ways to populate this block. As described
by Felgenhauer and Jarvis (2005), it then follows to consider the filling-in of the first rows of
B2 and B3. Felgenhauer and Jarvis (2005) shows that there are 20 possible configurations of
numbers (without regard to order) for the top rows of B2 and B3: two pure and eighteen mixed.

Definition 1.10. A band or pillar contains pure rows or columns if the rows or columns of
the blocks in that band or pillar respectively contain permutations of the same elements as one
another.

For example, all bands and pillars of the grid in Figure 1.7 are constructed of pure rows and
columns – as, for example, the numbers [1, 2, 3] stick together in the same row as each other in
each block of the first band. Similarly, the same holds for all [x, y, z] which are together in any
row or column in any block, and the blocks of the corresponding band or pillar.

Definition 1.11. A band or pillar contains mixed rows or columns if they are not pure by
Definition 1.10.

For the pure top rows, there are (3!)6 possible completions of the blocks B2 and B3 – because
there are 3! ways of arranging the three numbers in each of the three rows of each of the two
blocks, all of which are independent from one another. For the mixed top rows, there are
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The Mathematics of Number Puzzles 1.3 Clues

significantly more possible numberings, though. The top row can be fully determined by the
choice of mixed numbering (there are 18 of these), but in each of the blocks there will be one
row with just one determined number two cells with multiple completions, and another row with
two determined numbers and one cell with multiple possible completions. The completion of
the unknown cells in each block are codependent on each other – so there are three possible
completions. Thus, for the mixed top rows, there are 3 × (3!)6 possible configurations. So, we
have

2× (3!)6 + 18× 3× (3!)6 = 2612736

possible ways to populate the top band (B1, B2, and B3).

Blocks B4 and B7 can be populated in exactly the same way, and so we may say that for each
of the 2612736 numberings of the first (top) band, there are 2612736 completions of the first
(left-most) pillar.

The inner loop, containing blocks B5, B6, B8, and B9, can be filled-in by computer – as
was done by Felgenhauer and Jarvis (2005). This computation yields a result that there are
6 670 903 752 021 072 936 960 ≈ 6.671 × 1021 valid numberings of the 9 × 9 Sudoku grid. This
number, denoted N0, includes all numberings though – even ones which are essentially the same
by symmetry.

1.2.2 Symmetries

Similarly to the method of reducing Shidoku grids to those essentially different (according to
the action of the same symmetry group defined in Definition 1.3), Burnside’s lemma may also
be utilised for N0. Of course, with much larger numbers, larger sets and exponentially more
symmetries, these computations are not simple and so are found through computer programs.
Russell and Jarvis (2006) carried out these computations, reducingN0 to 5 472 730 538 essentially
different filled 9× 9 grids.

1.3 Clues

Clues in Sudoku puzzles are pre-numbered cells which serve to assist the solver in completing
the puzzle. A 9 × 9 puzzle with 0 clues has 6 670 903 752 021 072 936 960 solutions (all possible
filled grids) – as, with no pre-numbered cells, any valid completed grid would be a valid solution.

Definition 1.12. A solution Si is a valid filled Sudoku grid.

Definition 1.13. An instance Ii is a Sudoku grid of clues which are laid out in a valid form,
from which at least one solution can be acquired. |Ii| is the number of clues in an instance Ii.

Definition 1.14. A proper instance is one which generates a unique solution. Otherwise, it is
improper.

Definition 1.15. A minimal instance is a proper instance which becomes improper on the
removal of any clue.
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The Mathematics of Number Puzzles 1.3 Clues

In this section, we will review claims and proofs that there exist no proper instances with fewer
than 17 clues. This does not however mean that all instances with 17 or more clues are proper,
however. For example, Figure 1.8 shows an improper instance with 77 clues.

1 2 3 4 5 6 7
4 9 8 3 7 2 5 6 1
5 7 6 1 8 9 2 4 3

3 8 2 6 9 5 4 1 7
9 4 5 7 2 1 8 3 6
6 1 7 8 4 3 9 2 5

8 5 1 9 3 4 6 7 2
7 6 9 2 1 8 3 5 4
2 3 4 5 6 7 1

Figure 1.8: An improper 9× 9 Sudoku instance with 77 clues. The remaining cells in the top row can be validly
filled-in with 8 and 9 in any order, and the remaining cells in the bottom row can be validly filled-in with 8 and
9 in the reverse of the order chosen for the top row.

Lemma 1.16. For an n× n Sudoku grid, the largest improper instance has |Ii| = n2 − 4.

Proof. An instance may be constructed such that all cells are filled-in but four, of which two
must lie horizontally adjacent and contained in one block, and the remaining two must lie in
the same columns as the first two, but in a different block. The numbering of the two rows
(and blocks) which are occupied by the empty cells should be permutations of one another –
meaning that both sets of empty cells can be filled with the same two numbers – i and j, for
example. If the first two empty cells are numbered [i, j], then the remaining must be numbered
[j, i]. Equally valid is the solution where the first two empty cells are numbered [j, i] and the
remaining are numbered [i, j]. Hence, there are two solutions for any instance Ii of an n × n
Sudoku grid with |Ii| = n2 − 4 – so Ii is improper.

Corollary 1.17. All instances of an n× n Sudoku grid with |Ii| ≥ n2 − 3 are proper.

Proof. In all possible configurations of three empty cells, at least two of them are members of a
row or column which contains eight filled cells – so there exists only one possible numbering for
each of these cells. The remaining cell also only has one possible numbering – thus completing
the board and generating a solution.

Proposition 1.18. The smallest proper instance of a 4× 4 Shidoku puzzle has 4 clues.

Proof. We know there exists a proper instance with 4 clues (see Figure 1.9), so we shall show
that any 4-clue proper instance is minimal. That is, there exists no 3-clue proper instance for a
Shidoku grid. Suppose we have a partial Shidoku with three pre-filled cells. the first filled cell
is in the position (1, 1) – the top-left cell. Let this cell be occupied by 1. Let the second filled
cell be occupied by 2. There are three cases for where the second filled cell may be.

Case 1: The second filled cell is in the first row or column – (1, j) or (i, 1) respectively,

8



The Mathematics of Number Puzzles 1.3 Clues

1
2

3
4

Figure 1.9: A proper Shidoku instance with 4 clues.

In this case, if the third filled cell is in this same row/column as the first two, there exist
two adjacent empty blocks whose numberings are ambiguous – and their rows/columns may be
swapped. So three clues in the same row/column make an improper instance.

In the case that the third clue is not in the same COME BACK TO THIS. https://theory.
tifr.res.in/~sgupta/sudoku/theorems.pdf

Case 2:

Case 3:

https://web.archive.org/web/20060102111254/http://www.csse.uwa.edu.au/~gordon/sudokumin.

php

https://theory.tifr.res.in/~sgupta/sudoku/shidoku.html

1.3.1 Valid Instances Vs. Valid Solutions

Whilst numbers can be added to an empty Sudoku grid in a seemingly valid way, not all can
generate a valid solution – so not all are instances. Similarly, many can generate multiple
solutions. In this subsection, we shall explore the proportion of valid solutions per valid instance.

Lemma 1.19. An upper bound for the number of valid instances for an n× n Sudoku puzzles
is (n+ 1)n

2 .

Proof. There are n2 cells in a Sudoku grid, for each of which there are n + 1 choices of their
status in an instance. They can contain one of the numbers 1, 2, · · · , n, or they can remain
blank. Therefore, with n + 1 choices for each of the n2 cells – there are (n + 1)n

2 possible
configurations from this. This includes cases which do not generate valid instances, though – for
example, where cells housed in the same block, row or column are filled-in identically – which
is invalid in the context of Sudoku. Hence, the number of instances for an n× n Sudoku grid is
strictly less than (n+ 1)n

2 .

In the case of Shidoku (4 × 4 Sudoku grids), this means that there are strictly less than 516 =

152 587 890 625 valid instances. This can, in fact, be broken down further by considering binomial
coefficients.

Definition 1.20. The binomial coefficient
(
n
k

)
is the number of ways of choosing k objects from

a set of n objects.
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The Mathematics of Number Puzzles 1.4 Other Interesting Facts about Sudoku

We can utilise this to say that for an n× n Sudoku grid, there are
(
n
k

)
ways to select k cells to

fill-in in an instance Ii with |Ii| = k, and – by the same argument used in Lemma 1.19 – there
are at most 4k instances per set of k cells.

To be completed...

http://magictour.free.fr/sudoku.htm

1.4 Other Interesting Facts about Sudoku

Theorem 1.21 (Phistomefel’s Theorem). The digits in the cells labelled xi,j (in Figure 1.10)
are the same as those in the cells labelled yi,j .

x1,1 x1,2 • • • • • x1,8 x1,9

x2,1 x2,2 • • • • • x2,8 x2,9

• • y3,3 y3,4 y3,5 y3,6 y3,7 • •

• • y4,3 y4,7 • •

• • y5,3 y5,7 • •

• • y6,3 y6,7 • •

• • y7,3 y7,4 y7,5 y7,6 y7,7 • •

x8,1 x8,2 • • • • • x8,8 x8,9

x9,1 x9,2 • • • • • x9,8 x9,9

Figure 1.10: A 9× 9 Sudoku grid, labelled for explanation of Phistomefel’s Theorem (Theorem 1.21).

In order to prove Phistomefel’s Theorem, we shall first make the following observations:

Lemma 1.22. In a standard-size 9× 9 Sudoku grid, the digits in each row, column and block
respectively sum to 45.

Proof. Each row, column and block contains the numbers {1, 2, 3, 4, 5, 6, 7, 8, 9}(= [9]) in some
order. ∑

n∈[9]

n = 45.

Notation 1.23. Let x be the sum of digits labelled xi,j in 1.10, and let y be the sum of the
digits labelled yi,j in 1.10. That is,

x = x1,1+x1,2+x1,8+x1,9+x2,1+x2,2+x2,8+x2,9+x8,1+x8,2+x8,8+x8,9+x9,1+x9,2+x9,8+x9,9,

y = y3,3+y3,4+y3,5+y3,6+y3,7+y4,7+y5,7+y6,7+y7,7+y7,6+y7,5+y7,4+y7,3+y6,3+y5,3+y4,3.

Lemma 1.24. For x, y as defined above (Notation 1.23), x = y.

10
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The Mathematics of Number Puzzles 1.4 Other Interesting Facts about Sudoku

Proof. If we wished to find the sum of the digits in the outer two rings (marked red in Figure
1.10) of a 9× 9 Sudoku grid, there are two ways to do this:

Method 1: We may take the sum of the outer blocks (B1, B2, B3, B4, B6, B7, B8, B9), which
– by Lemma 1.22 – is equal to

8× 45 = 360,

and subtract the sum of the cells labelled yi,j , which is equal to y. Hence, the sum of the values
in cells of the two outer rings is

360− y.

Method 2: Alternatively, we may instead take the sum of the digits in rows and columns 1, 2,
8 and 9 (each of which is equal to 45). The summation of the rows and columns mentioned is
equal to

8× 45 = 360.

However, we must recognise that the cells labelled xi,j in Figure 1.10 are counted twice in this
summation – so their values must be subtracted.

That is, the sum of the values in the cells of the two outer rings is equal to

360− x.

Hence, we have shown that 360− y = 360− x – and thus x = y.

Proof of Phistomefel’s Theorem (Thm 1.21). Finish this.

11



The Mathematics of Number Puzzles Section 2 – Futoshiki

※ Futoshiki

2.1 Latin Squares (in relation to Futoshiki)

Definition 2.1. A Latin Square is an n × n grid, populated with the numbers 1 − n, each of
which appear precisely n times – exactly once in each row and column of the grid.

2.1.1 Enumeration

We shall first focus our attention on the simple question of how many n×n Latin squares exist.
First, we must define some concepts though.

Notation 2.2 (Shao and Wei, 1992). Bn is the set of all n× n matrices with entries in the set
{0, 1}.

Notation 2.3 (Shao and Wei, 1992). σ0(A) is the number of zero entries in a matrix A.

Definition 2.4. The permanent per(A) of an n× n matrix A = (ai,j) is given by

per(A) :=
∑
s∈Sn

n∏
i=1

Ai,s(i).

where S is the set of all permutations of [1, 2, · · · , n].

Example 2.5. For a matrix a =

(
a b

c d

)
, the permanent per(A) = ad+ bc.

Theorem 2.6 (Shao and Wei, 1992). The number Ln of n× n Latin squares is given by

Ln = n!
∑
A∈Bn

(−1)σ0(A)
(
per(A)
n

)
.

Before proving this, we shall first give some definitions:

Definition 2.7. An n×n permutation matrix is a matrix whose rows can be permuted to reach
the n× n identity matrix. That is, a permutation matrix is a matrix whose entries are 0 and 1,
with precisely one 1 in each row and column.

Example 2.8. The following matrices are all examples of 3× 3 permutation matrices:1 0 0

0 1 0

0 0 1


1 0 0

0 0 1

0 1 0


0 1 0

1 0 0

0 0 1


Proof of Theorem 2.6 (Shao and Wei, 1992). Let Sn be the set of n × n permutation matrices
and let S be the set of all n−permutations of the elements in the set Sn. Define the following
n2 subsets of S:

Sij = {(P1, · · · , Pn) ∈ S : (P1)ij = · · · = (Pn)ij = 0} (1 ≤ i, j ≤ n)

where (A)ij denoted the (i, j)−entry of A.

12
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Let Jn be the n× n matrix with all elements 1.

Every letter i ∈ {1, 2, · · · , n} in a Latin square determines a permutation matric Pi, whose non-
zero positions correspond to the positions occupied by i in the given Latin square. Therefore,
a Latin square of order n is equivalent to an ordered set of n distinct permutation matrices
(P1, P2, · · · , Pn) ∈ S satisfying P1 + · · ·Pn = Jn. On the other hand,

P1 + · · ·Pn = Jn ⇐⇒ (P1)ij , · · · (Pn)ij are not all zero, for all 1 ≤ i, j ≤ n

⇐⇒ (P1, · · · , Pn) ∈ ∩1≤i,j≤nSij .

Hence, we have

Ln =

∣∣∣∣∣∣
⋂

1≤i,j≤n
Sij

∣∣∣∣∣∣
For any X ⊆ In × In, let

SX = ∩(i,j)∈XSij .

Then, by the inclusion-exclusion principle, we have

Ln =
∑

X⊆In×In

(−1)|X||SX |. (1)

We now need a formula for |SX |. Let A(X) be the (0, 1) matrix of order n with 0’s in the
positions of X and 1’s in the positions not in X. Then,

(P1, · · · , Pn) ∈ SX ⇐⇒ (P1)ij = · · · (Pn)ij = 0 for all (i, j) ∈ X

⇐⇒ (P1, · · · , Pn) ∈ S and P1 ≤ A(X), · · · , Pn ≤ A(X).

Let PX = {P ∈ Sn : P ≤ A(X)} be the set of n × n permutation matrices contained in A(X).
Then,

|PX | = per(A(X))

Now, SX is just the set of n−permutations of the elements in PX . So,

|SX | = n!

(
|PX |
n

)
= n!

(
per(A(X))

n

)
. (2)

Combining (1) and (2), and substituting A(X) = A, we have

Ln = n!
∑
A∈Bn

(−1)σ0(A)
(
per(A)
n

)
.

A standard-sized Futoshiki puzzle is 5× 5 in dimension, so we may use Theorem 2.6 to compute
the number of 5× 5 Latin squares. First, we must compute |B5|. This is simple, as there are 25
entries in a 5×5 matrix, and there is a binary choice of number for each of these entries. Hence,
there are 225 = 33 554 432 possible 5× 5 matrices with entries in {0, 1}, so |B5| = 33 554 432.

From here, the process complicates heavily – and so calculations should be done by a computer.
A result of 161 280 is held by OEIS Foundation Inc. (2004) for the number of 5×5 Latin squares.
However, just like with Sudoku grids, some may wish to consider symmetries of certain Latin
squares too – in order to reduce this number.

13
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2.1.2 Symmetries

For Latin Squares, the notions of structurally distinct and isotopic numberings are relevant when
seeking symmetries and reducing the amount of numerations as such. As we are considering Latin
squares in relation to Futoshiki puzzles, due to the importance of the cells adjacent to each cell in
a Futoshiki puzzle, the operations of permuting rows and columns and relabelling entries do not
preserve the uniqueness of a puzzle (unlike with traditional Latin squares, considered separately
from Futoshiki) – as Futoshiki heavily depends on the inequality relations between entries and
their adjacent cells. Thus, we should consider G acting on1 the set of Latin squares X by the
natural action of the dihedral group D4 on the square induced by X – as the symmetries of D4

preserve the uniqueness of a Futoshiki puzzle. As noted by Barink (2015), there are at most
eight symmetries to each Latin square when acted on by D4 – each generated by a rotation of
90◦, and/or by a flip across any axis.

Definition 2.9. Two Latin squares are structurally distinct if neither is a renumbering, reflec-
tion, rotation, or combination thereof, of the other. Otherwise, they are structurally identical.

Definition 2.10. Two Latin squares are isotopic if each can be turned into the other by per-
muting the rows, columns, and symbols.

Definition 2.11. R(Ln) is the number of reduced Latin squares of dimension n. When reduced,
the first row and column respectively of a square of dimension n is [1, 2, · · · , n].

To reduce our 161 280 possible 5 × 5 Latin squares, we must divide by 5! × 4!. That is, we
must divide by the number of permutations of the first column, multiplied by the number of
permutations of the first row with the first column fixed. In general, for an n× n Latin square,
we have

R(Ln) =
Ln

n!(n− 1)!
.

As held by OEIS Foundation Inc. (1995), for a 5× 5 Latin square, there are 56 reduced squares.

Notation 2.12. Let fd1 denote a flip (or reflection) across the diagonal running from the top-
left to the bottom-right of a Latin square. Also, let fd2 denote a flip (or reflection) across the
central-diagonal which is orthogonal to d1.

For our set X of all n × n Latin squares, we shall consider the action of the symmetry group
G = D4 (D4 y X) which contains the identity element e, rotations r90, r902, r903, and flips fh
and fv across the horizontal and vertical axes respectively, and flips fd1 and fd2 across the two
diagonal axes respectively. That is,

G =< r90, fh >= {e, r90, r902, r903, fh, fv, fd1 , fd2}.

Proposition 2.13. For any n×n Latin square x ∈ X of odd order (n is odd), the group action
of rotating by 90◦, r90, has order 4.

1See Definition 1.5

14
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Proof. For contradiction, suppose that r90 does not have order 4. We know r90
4 = e – the

identity. Thus, o(r90) > 4, so the order of r90 must be 1, 2, or 3.

Case 1: o(r90) = 1 ⇐⇒ r90 = e.

x =

x1,1 · · · x1,n
...

. . .
...

xn,1 · · · xn,n

r90−−→
xn,1 · · · x1,1
...

. . .
...

xn,n · · · x1,n

As r90 = e, we must have x1,1 = x1,n = xn,n = xn,1. But if this is the case, then x is not a Latin
square – as it would have two of the same number in the first and last rows and columns. Thus,
a contradiction.

Case 2: o(r90) = 2 ⇐⇒ r90
2 = e.

x =

x1,1 · · · x1,dn
2
e · · · x1,n

...
. . .

...
. . .

...
xdn

2
e,1 · · · xdn

2
e,dn

2
e · · · xdn

2
e,n

...
. . .

...
. . .

...
xn,1 · · · xn,dn

2
e · · · xn,n

r902−−→

xn,n · · · xn,dn
2
e · · · xn,1

...
. . .

...
. . .

...
xdn

2
e,n · · · xdn

2
e,dn

2
e · · · xdn

2
e,1

...
. . .

...
. . .

...
x1,n · · · x1,dn

2
e · · · x1,1

As r902 = e, this implies that the ijth entries in x are equal to those in the rotation, on the right.
If this is the case, then x1,dn

2
e = xn,dn

2
e and xdn

2
e,1 = xdn

2
e,n – but this is impossible, as it would

mean that there exists two equal entries in both row dn2 e and column dn2 e. Thus, x cannot be a
Latin square, and we have a contradiction.

Case 3: o(r90) = 3 ⇐⇒ r90
3 = e.

x =

x1,1 · · · x1,n
...

. . .
...

xn,1 · · · xn,n

r903−−→
x1,n · · · xn,n
...

. . .
...

x1,1 · · · xn,1

As r903 = e, we must have x1,1 = x1,n = xn,n = xn,1. But if this is the case, then x is not a
Latin square – as it would have two of the same number in the first and last rows and columns.
Thus, a contradiction.

Hence, with a contradiction in all three cases, it must be true that r90 ∈ G acting on X (rotating
by 90◦), has order 4.

Corollary 2.14. As a result of Proposition 2.13, we have that the actions of rotating an n× n
Latin square (with n odd) by 180◦ (r902) and 270◦ (r903) have orders 2 and 4 respectively.

Note: From this point onward, we will only consider Latin squares of odd order, and more
specifically – as it is the most common dimension of Futoshiki puzzle – the 5× 5 Latin square.

Proposition 2.13 tells us that every odd n × n Latin square has 4 unique symmetries by the
operation of rotation by 90◦ – which implies that none of the rotation elements of the dihedral
group D4 (r90, r902, r903) fix any grids. Next, we must consider reflections (or flips) across centre
axes.

15



The Mathematics of Number Puzzles 2.1 Latin Squares (in relation to Futoshiki)

Proposition 2.15. A Latin square cannot be symmetrical across a horizontal or vertical centre-
axis.

Proof. For contradiction, suppose a Latin square can be symmetrical across its horizontal (case
1) or vertical (case 2) axis.

Case 1: The Latin square x is symmetrically identical across its horizontal centre-axis.

x =

x1,1 · · · x1,n
...

. . .
...

xn,1 · · · xn,n

As the Latin square is symmetrical about its horizontal axis, we have x1,1 = xn,1 and x1,n = xn,n

– but this is absurd, as two entries in the same column cannot be equal in a Latin square. Thus,
x is NOT a Latin square – giving a contradiction.

Case 2: The Latin square y is symmetrical across its vertical centre-axis.

y =

y1,1 · · · y1,n
...

. . .
...

yn,1 · · · yn,n

As the Latin square is symmetrical about its horizontal axis, we have y1,1 = y1,n and yn,1 = yn,n

– but this is absurd, as two entries in the same row cannot be equal in a Latin square. Thus, y
is NOT a Latin square – giving a contradiction.

As a result of Proposition 2.15, we can say that the order of reflections across either of the
horizontal (fh) or vertical (fv) axes is 2. That is, a Latin square cannot be symmetrical across its
vertical or horizontal centre-axis. Latin squares can, however, be symmetrical across a diagonal
axis – as illustrated in Figure 2.1.

1 2 3 4 5

2 5 4 1 3

3 4 2 5 1

4 1 5 3 2

5 3 1 2 4

fd1−−→

1 2 3 4 5

2 5 4 1 3

3 4 2 5 1

4 1 5 3 2

5 3 1 2 4

Figure 2.1: An example of a 5×5 Latin square which is symmetrical about the diagonal axis d1 – meaning that,
for this particular Latin square, the order o(fd1) is 1 – because fd1 acts as the identity.

In order to proceed with Burnside’s Lemma (Theorem 1.8), we must consider how many of the
161 280 Latin squares of dimension 5 are fixed by the group actions fd1 and fd2 respectively (it is
trivial that all 161 280 are fixed by e, and we have shown that none are fixed by fh, fv, r90, r903,
and – when n is odd – r902 – as all of these symmetries have order above 1). In order to help
with this, we can make two observations:

Proposition 2.16. Let X be the set of all 5×5 Latin squares. Then Xfd1 = X ∩Sym5 – where
Sym5 is the set of all 5× 5 symmetric matrices.

16
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Proof. For an Latin square x ∈ X (where X is the set of all 5× 5 Latin squares) to be fixed by
fd1 , the ijth entry must be equal to the jith entry, for all 1 ≤ i, j ≤ n – which is the definition
of a symmetric matrix.

Lemma 2.17. |Xfd1 | = |Xfd2 |.

Proof. There exists a bijection ϕ : Xfd1 → Xfd2 , whereby any element x ∈ Xfd1 is mapped to an
element in Xfd2 through multiplication by r90. Similarly, an inverse function ϕ−1 : Xfd2 → Xfd1

exists, which maps every z ∈ Xfd2 to an element x ∈ Xfd1 through multiplication by r903.

There exists no systematic way to find all symmetric 5 × 5 Latin squares, other than by brute
force. Thus, instead of working through all 161 280 squares, we shall instead just consider the
56 reduced squares (R(5) = 56). Through explicit analysis of a list of all 56 reduced 5× 5 Latin
squares, it is clear that there exist 6 symmetric reduced 5× 5 Latin squares (squares 15, 24, 25,
39, 41, and 51, on this list).

Proposition 2.18. There exist 720 (not necessarily reduced) Latin squares symmetric about
d1, such that Xg = 720. That is,

X ∩ Sym5 = 720.

Proof. As noted above, there exist 6 reduced 5×5 Latin squares which are symmetric about the
diagonal d1. There are 5! relabelings of any Latin square, and thus there are 5! ways to permute
the labelling of these six reduced Latin squares such to make them non-reduced, but to maintain
their symmetry about d1. Hence, for each of the 6 symmetric reduced Latin squares, there are
5! = 120 symmetric relabelings – so there are 6×120 = 720 symmetric (not necessarily reduced)
Latin squares in X.

With this, we can finally apply Burnside’s Lemma (Theorem 1.8) to all 5× 5 Latin squares, to
find how many there are up to symmetry. To recall, the elements r90, r902, r903, fv, fh ∈ G each
fix 0 elements of X = {5 × 5 Latin Squares}; e ∈ G – the identity – fixes all 161 280 elements;
and fd1 , fd2 ∈ G fix 720 elements each respectively.

Thus, we have:

|X/G| = 1

|G|
∑
g∈G
|Xg|

=
1

8
(161 280 + 720 + 720)

=
162 720

8

= 20 340 (3)

In fact, generalising this to any odd n × n Latin square, with X = {n × n Latin Squares}, we
have:

|X/G| = 1

|G|
∑
g∈G
|Xg|

17
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>

>
2 > 4

>
>

<

>

4 <

Figure 2.2: An instance of a 5×5 Futoshiki puzzle
with a standard set of clues.

2 4 5 > 3 1

>

3 2 > 1 4 5

5 1 3 > 2 4

>

1 3 < 4 5 2

>

4 < 5 2 1 3

Figure 2.3: The completed puzzle for the instance
shown in Figure 2.2.

=
1

8
(|X|+ 2 (n!× |X ∩ Symn|)) .

We can also carry out a similar process for n even, in which case |Xr902 | 6= 0 – so the rotation
of 180◦ would indeed fix some Latin squares. With the standard-sized Futoshiki being 5 × 5,
though, we are not interested in the case of n being even.

2.2 Futoshiki – Introducing the Inequalities

Futoshiki is a Japanese number puzzle made solvable by clues given in the form of strict inequality
symbols (< and >) which relate adjacent cells. Sometimes – depending on the number of
inequality symbols present on the grid – there may also be some cells already filled in. A
completed puzzle creates a Latin square. See Figures 2.2 and 2.3.

Definition 2.19. An instance is a configuration of inequality symbols relating a selection of
adjacent cells in a partially-complete Latin square. The inequality symbols and pre-filled cells
act as clues to help the solver complete the numbering of the grid.

2.2.1 Clues

In an n× n Futoshiki puzzle, there are (n− 1) spaces which may be occupied by an inequality
symbol in every row and column respectively. With there being n rows and n columns, it follows
that an n × n grid presents n(n − 1) + n(n − 1) = 2(n2 − n) spaces for inequality symbols to
potentially be.

For each of the 2(n2 − n) “clue spaces”, each can take one of three statuses: it can have a <
symbol, a > symbol, or it can remain blank. For the purpose of counting possible grids, though,
we may simplify this to a binary choice.

Proposition 2.20. For each of the 2(n2−n) “clue spaces” in an n×n grid, there are two choices
of its status: it can either have a clue in it, or it can remain blank. Thus, it follows that there
are

22(n
2−n)

possible configurations of inequality symbols for every completed n× n Latin square.

18
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Example 2.21. For each 5 × 5 Futoshiki grid (n = 5 – the typical size for this puzzle), there
are

22(20) ≈ 21 048 576

possible configurations for clues – ranging from no clues, to having clues between all adjacent
cells (40 clues). With 20 340 unique grids up to symmetry (20 340 orbits), that makes 20 340×
21 048 576 ≈ 2.2364× 1016 unique completed Futoshiki puzzles!

2.2.2 Symmetries

Like with Latin squares, we wish to count unique Futoshiki puzzles up to symmetry through the
use of Burnside’s Lemma (Theorem 1.8). As we saw with the Latin squares, the only symmetries
g ∈ D4 acting on X with any fixed points were e, fd1 , fd2 – so these are the only symmetries we
shall consider for inequality symbols on the grid – as when we utilise Burnside’s Lemma for the
combination of Latin squares and configurations of inequality symbols, any symmetries with 0
fixed points for Latin squares will cancel out – as will be shown by Theorem 2.23.

Definition 2.22. Let us define the following sets:

• X = {5× 5 Latin squares},

• Y = {Configurations of inequality symbols in a 5× 5 Futoshiki grid},

• Y ′ = {Configurations of positions for symbols in a 5× 5 Futoshiki grid},

• F = (X × Y ) = {5× 5 Latin squares with configurations of inequality symbols overlaid},

• F ′ = (X×Y ′) = {5×5 Latin squares with configurations of positions for symbols overlaid}.

It is trivial that the identity e fixes all 2.2364 × 1016 Futoshiki puzzles, but it is less trivial
when considering the fixed points of fd1 , fd2 ∈ G. Like with Latin squares, the elements y ∈ Y ′

fixed by fd1 are the ones which are symmetric about the diagonal axis from the top-left to the
bottom-right of the grid. When inserting inequality signs on grids such that they satisfy this, we
are essentially filling-in two positions for each choice we make – so there are half as many choices
to make – as every choice fills-in two positions. Thus, we only need to consider the filling-in of
the positions on the bottom/left-side of our diagonal axis d1 – as the positions on the top/right-
side mirror the ones on the bottom/left. Hence, we have that there are 2

1
2
2(n2−n) = 2(n

2−n)

configurations of inequality signs which are symmetric about d1. It follows from this that
|(Y ′)fd1 | = 2(n

2−n) = 220 for a 5× 5 grid.

Similarly to with Latin squares, we can apply Lemma 2.17, which tells us that

|(Y ′)fd1 | = |(Y ′)fd2 |.

Theorem 2.23. For the group G acting on the sets X and Y ′ by the natural action of D4 on
the squares induced by X and Y ′ respectively, as defined in Definition 2.22, we have

|(F ′)g| = |Xg| · |(Y ′)g|.
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Proof. Let x ∈ X and y ∈ Y ′ – such that (x, y) ∈ (F ′)g ⊂ F ′. Also, let g ∈ D4.

(x, y) ∈ (F ′)g ⇐⇒ g · (x, y) = (x, y)

⇐⇒ (g · x, g · y) = (x, y)

⇐⇒

g · x = x,

g · y = y.

⇐⇒

x ∈ Xg,

y ∈ (Y ′)g.

Hence, all ordered pairs (x, y) are in (F ′)g precisely when both x ∈ Xg and y ∈ (Y ′)g. So,
for every x ∈ Xg, any element y ∈ (Y ′)g can be overlaid to create an element of X × Y ′

which is fixed by g – so there are |(Y ′)g| fixed overlay configurations for every x ∈ Xg – thus,
|(F ′)g| = |Xg| · |(Y ′)g|.

Whilst Theorem 2.23 is profound in working toward the eventuality of counting the total number
of Futoshiki puzzles up to symmetry by Burnside’s lemma, the sets Y ′ and F ′ do not relate
directly to Futoshiki puzzles. We shall thus show that there is aD4-equivariant bijection between
the D4−sets F ′ and F (and consequently, one between Y ′ and Y too).

Definition 2.24. A G−set is a set S together with an action of a group G.

Definition 2.25. A map f : X → Y between two G−sets X,Y is G−equivariant if

f(g · x) = g · (f(x)),

for all g ∈ G and x ∈ X.

First, we shall recognise a bijection ϕ between F ′ and F , before going on to show that it is
D4−equivariant.

Proposition 2.26. There exists a bijection ϕ : F ′ → F .

Proof. We shall prove the bijectivity of a function ϕ : F ′ → F through first defining it and
proving its existence as an injective function, and then defining a valid inverse function ψ : F →
F ′, to prove surjectivity.

Given (x, y′) ∈ F ′ and (x, y) ∈ F , we may define ϕ : F ′ → F to send (x, y′) 7→ (x, y) ∈ F

such that the inequality symbols in y ∈ Y take the same configuration as the places for symbols
in y′ ∈ Y ′. As (x, y) ∈ F is a valid Futoshiki puzzle, there is only one valid y which can be
mapped to by ϕ(y′) – as there is only one valid configuration of inequality symbols in the layout
presented in y′ which creates a valid Futoshiki puzzle from x ∈ X. Hence, ϕ is an injection from
F ′ to F .

Next, we shall consider a map ψ : F → F ′, which sends (x, y) 7→ (x, y′). This shall leave x ∈ X
fixed, but send the configuration of symbols y ∈ Y to the anonymised configuration of symbol
places y ∈ Y ′. Every y′ ∈ Y maps to precisely one y′ ∈ Y by this function. In fact, it shall send
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ϕ(y′) to y′ – and so ψ : F → F ′ defines an inverse of ϕ : F ′ → F ; thus proving subjectivity and
consequently, bijectivity.

Hence, we have shown that there exists a bijection ϕ : F ′ → F .

Lemma 2.27. There exists a D4−equivariant bijection ϕ : F ′ → F .

Proof. As defined in the proof of Proposition 2.26, there exists a bijection φ : F ′ → F . Now, it
suffices that the conditions of Definition 2.25 are satisfied by such a bijection. For all (x, y′) ∈ F ′,

g · ϕ((x, y′)) = ϕ(g · (x, y′)) ⇐⇒ g · (x, y) = ϕ(g · x, g · y′)

⇐⇒ (g · x, g · y) = (g · x, g · y).

Hence, the bijection defined in Proposition 2.26 is equivariant.

Corollary 2.28. |F g| = |(F ′)g| = |Xg| · |(Y ′)g|, as a result of Theorem 2.23 and Lemma 2.27.

We can now go on to find the total number of completed 5 × 5 Futoshiki grids by the use of
Burnside’s Lemma (Theorem 1.8) and Corollary 2.28 (and the results leading up to it). We
have:

|F/G| = 1

|G|
∑
g∈G
|F g|

=
1

8

∑
g∈G
|Xg| · |(Y ′)g|

=
1

8

(
161 280 · 22(52−5) + 720 · 252−5 + 720 · 252−5

)
= 22 166 154 604 707 840 Futoshiki grids of dimension 5× 5. (4)

2.3 Minimum Number of Clues Required for a Unique Futoshiki Puzzle

For a Futoshiki puzzle to be uniquely solvable, there must be a minimum amount of clues. For
example, for a 5×5 grid with no inequality symbols on it, any of the 161 280 5×5 Latin squares
is a valid and correct solution.

To be Completed...
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※ Cross-Sum / Cross-Number

A cross sum is a puzzle based around a 3×3 square which is to be filled with the numbers 1−9,
such to satisfy a set of equations. Clues are given as +, −, ×, and ÷ symbols between adjacently
neighbouring cells and a positive integer at the end of each row and column. The solver must
insert numbers into the square such to satisfy the equations in each row and column which are
set out by the arithmetical operators between cells and the integer at the end of each row and
column, which that row and column should be equal to.

+ × = 70

− + +

− × = 8

− ÷ +

+ × = 81

= = =

3 1 18

Figure 3.1: A Cross-Sum puzzle, with clues as of
arithmetical operators and row/column totals.

8 + 6 × 5 = 70

− + +

3 − 1 × 4 = 8

− ÷ +

2 + 7 × 9 = 81

= = =

3 1 18

Figure 3.2: The solution for the puzzle shown in
Figure 3.1.

It is important to note that cross-sum puzzles do not work by the typical order of operations
(BIDMAS). Instead, the puzzle works from left-to-right in rows and top-to-bottom in columns.
For example, in the solution shown in Figure 3.2, we see that the central column reads

6 + 1÷ 7 = 1.

Of course, according to the order of operations in mathematics, this is not true, and in fact, the
left-hand side would read 6 + 1

7 , which is equal to 43
7 – not 1.

In cross-sum, working from top-to-bottom, we can interpret this column to say

(6 + 1)÷ 7 = 1,

which, of course, is true – as (6 + 1) = 7, and 7÷ 7 = 1.

Another notable feature of the puzzle is that you never leave the set of natural numbers N. For
example, if a row of a puzzle was

÷ × = 12,

although we have a valid solution given by

3 ÷ 2 × 8 = 12,

we have that 3 ÷ 2 = 1.5 /∈ N. Thus, as this does not stay within the natural numbers when
working left-to-right, the correct solution to this row would in fact be

6 ÷ 2 × 4 = 12.
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3.1 Enumeration

In enumerating cross-sum puzzles, we shall first consider an upper-bound for the number of
fully-filled grids which exist – before considering how many valid grids do exist. We shall begin
by noting that there are 9 cells to be filled by the numbers 1− 9, each appearing exactly once,
and there are 12 places for operation symbols (+,−,×,÷) to be placed.

Lemma 3.1. Through considering permutations of the numbers 1 − 9, there are 9! = 362 880

arrangements of the numbers into the cells on the grid – all of which create at least 4096 valid
grids.

Proof. It is trivial that there are 9! = 362 880 arrangements of the numbers into the cells on the
grid, so we shall just prove that all of these create at least one valid grids.

It is a fact that the natural numbers are closed under addition and multiplication. Hence, any
grid with a valid arrangement of the 9 numbers and only containing the operators + and × will
be valid. For each of the 362 880 grids, there are 12 places for operation symbols and each of
these can be either + or ×. Hence, there is a binary choice of operators for each of the 12 places
– so there are 212 = 4096 operator configurations only involving these two operators.

Lemma 3.2. There exists 16 777 216 configurations of operators on the cross-sum grid.

Proof. There are 12 places for operators on the grid, and there are 4 choices of operator per grid.
Therefore, by elementary combinatorics, there are 412 = 16 777 216 configurations of operators
on the cross-sum grid.

Neglecting the fact that the puzzle works within the set of natural numbers, we shall now
consider an upper bound for how many possible grids there are.

Proposition 3.3. 6 088 116 142 080 is an upper bound for the number of valid cross-sum grids.

Proof. By Lemma 3.1, there are 362 880 configurations of the numbers on the grid, and by
Lemma 3.2, there are 16 777 216 possible configurations of the operator symbols on the grid.

For each configuration of numbers, we can overlay every configuration of operator symbols.
Hence, there are

362 880× 16 777 216 = 6 088 116 142 080

possible combinations of number configurations and operator configurations.

Not all combinations of number layouts and operator symbol layouts make valid puzzles, though
– hence why this is an upper bound. In fact, we can actually get a more accurate upper bound
by considering the behaviour of certain operators with our set of numbers 1− 9.

Lemma 3.4. In a puzzle constructed using only the − operator, the numbers 1, 2 and 3 cannot
be present in the first row or column.
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Proof. If the first cell of a row or column only using the − operator was 3, then to stay in N,
we must only subtract numbers less than 3. Hence, the second and third cells could only take
the values 1 and 2, but 3− 1− 2 = 0 /∈ N. Thus, 3 cannot be in the first cell.

If a 2 was present in the first row or column, then we would have a row or column which reads

2 − − = n.

It is trivially impossible for n to be a natural number for any enumeration of the second and
third number boxes – as the smallest numbers which can be validly placed in these boxes are 1

and 3 – which makes n = −2 /∈ N.

Similarly, if 1 was in the first box, the same argument works.

Lemma 3.5. In a puzzle constructed using only the ÷ operator, no prime number can be present
in the first row or column.

Proof. A prime number p has no positive divisors other than itself and 1. This means, if p is in
the first cell of a row or a column of a puzzle constructed using only the ÷ operator, the only
valid entry for the second cell is 1.

p ÷ 1 ÷ = n.

Of course, this means that the first two cells equate to p – and so in order for n to be a natural
number, the third cell must equal a positive divisor of p – but p is prime and its only divisors
are itself and 1, both of which are already present in the row/column. Hence, there is no valid
completion of a row or column of a puzzle using only the ÷ operator if the first cell of that
row/column is occupied by a prime number.

Corollary 3.6. In a puzzle using only the ÷ operator, the number 1 cannot be in the first cell
of any row or column.

Proof. 1 has no divisors in N other than itself, and so it is immediately obvious that 1 cannot
be inserted into the first cell of a row or column in a cross-sum, as the only entry which could be
inserted into the second cell is 1, but the same number cannot appear twice in the puzzle.

Lemma 3.7. The top-left cell in a puzzle using only the − operator cannot be 1, 2, 3, 4, 5, 6, 7,

or 8.

Proof. From Lemma 3.4, we know that the numbers 1, 2, 3 are invalid entries for any cells in the
first row or column, and we also know by definition of the puzzle that each number 1 − 9 can
only appear once in a grid. Suppose the top-left entry x 6= 9 – then 3 < x < 9. The top row of
the puzzle is

x − − = n,

for some n ∈ N. To avoid creating an invalid row, we must avoid the presence of the numbers
1, 2, 3 – thus, the second cell cannot be occupied by 1, 2, 3, (x − 4), (x − 3), (x − 2), (x − 1), as
any of these would cause the third cell to be 0, 1, 2, or 3 (of course, 0 is not valid either). For
x = 8, this means that the second cell cannot be occupied by 1, 2, 3, 4, 5, 6, 7 – leaving no valid
entries for this cell. Similarly, for x = 7, 6, 5, 4, 3, 2, 1, we yield the same finding.
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Proposition 3.8. There are no valid puzzles using only the − operator.

Proof. By Lemma 3.7, we see that the top-left cell cannot be equal to any number less than 9

– so let it equal 9. Then, we have that the top row is

9 − − = n,

We have that the second cell must not equal 1, 2, 3, 5, 6, 7, 8 (by the proof of Lemma 3.7) – so
there is a valid entry for the second cell:

9 − 4 − = n.

However, in order for n to be a natural number, the third cell must be equal to 1, 2, 3, or 4 –
all of which are invalid entries. Thus, there are no valid completions of the first row/column of
a Cross-sum puzzle which uses only the − operator.

Proposition 3.9. There are no valid puzzles using only the ÷ operator.

Proof. As a result of Lemma 3.5 and Corollary 3.6, we know that the numbers 1, 2, 3, 5, 7 cannot
occupy a cell within the first row or column – leaving only the numbers 4, 6, 8, 9 valid for the
cells of the first row and column. However, there are 5 cells which are in the union of the first
row and column, but only four valid entries for them. Thus, by the pigeonhole principle, there
does not exist a valid puzzle using only the ÷ operator.

Proposition 3.10. There are no valid puzzles using only a combination of the − and ÷ oper-
ators.

Proof.

To be Completed...
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※ GAP Code

The following code can be used in GAP to determine that the two Shidoku grids on page 5 are
essentially different and thus in different orbits.

1 # Written by Carl−Fredr ik Nyberg−Brodda
2
3 Ar eE s s e n t i a l l yD i f f e r e n t := function (x , y )
4 local k , H, G, K;
5
6 H := RowColumnSymmetryGroup ( ) ; # 128
7 G := SymmetricGroup (4 ) ; # 24
8
9 K := DirectProduct (G, H) ; # 3072

10
11
12 for k in Elements (K) do
13 i f ac t i on_d i r e c t (x , k )=y then
14 Pr int ( "The␣ square ␣\n\n" ) ;
15 Pret tyPr int ( x ) ;
16 Pr int ( "\n\nand␣ the ␣ square ␣\n\n" ) ;
17 Pret tyPr int ( y ) ;
18 Pr int ( "\n\nare ␣not␣ e s s e n t i a l l y ␣ d i f f e r e n t ; ␣ they␣ are ␣ r e l a t e d ␣by␣ the ␣

element ␣" , k , "\n" ) ;
19 return fa l se ;
20 f i ;
21 od ;
22 Pr int ( "The␣ square ␣\n\n" ) ;
23 Pret tyPr int ( x ) ;
24 Pr int ( "\n\nand␣ the ␣ square ␣\n\n" ) ;
25 Pret tyPr int ( y ) ;
26 Pr int ( "\n\nARE␣ e s s e n t i a l l y ␣ d i f f e r e n t . \ n" ) ;
27 return true ;
28
29 end ;
30
31 # Returns the square as a l i s t [ 1 . . n^2] , read a long the rows .
32 SquareAsList := function (S)
33 local l , i , j ;
34 l := [ ] ;
35 for i in [ 1 . . Length (S) ] do
36 for j in [ 1 . . Length (S) ] do
37 Add( l , S [ i ] [ j ] ) ;
38 od ;
39 od ;
40 return l ;
41 end ;
42
43 # Inver se o f the above . Takes parameter n f o r convenience .
44 ListAsSquare := function ( l , n )
45 local T, i , j ;
46 T := [ ] ;
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47 for i in [ 1 . . n ] do
48 T[ i ] := [ ] ;
49 for j in [ 1 . . n ] do
50 T[ i ] [ j ] := l [ n∗( i −1)+j ] ;
51 od ;
52 od ;
53 return T;
54
55 end ;
56
57
58
59 ## D i s the s e t o f Shidokus in matrix form
60 ## S i s the s e t o f Shidokus in l i s t form
61 MakeShidokus := function ( )
62 local A, C, D, i , S ;
63 A:=Arrangements ( [ 1 , 2 , 3 , 4 ] , 4 ) ; ;
64 C:=Cartes ian (A,A) ; ;
65 C:= F i l t e r e d (C, c−>not c [ 1 ] [ 1 ]= c [ 2 ] [ 1 ] and not c [ 1 ] [ 2 ]= c [ 2 ] [ 2 ] and not c [ 1 ] [ 3 ]=

c [ 2 ] [ 3 ] and not c [ 1 ] [ 4 ]= c [ 2 ] [ 4 ] ) ; ;
66 C:= F i l t e r e d (C, c−>Set ( [ c [ 1 ] [ 1 ] , c [ 1 ] [ 2 ] , c [ 2 ] [ 1 ] , c [ 2 ] [ 2 ] ] ) = [1 , 2 , 3 , 4 ] ) ; ;
67 D:=Cartes ian (C,C) ; ;
68 D:= F i l t e r e d (D, d−>Set ( [ d [ 1 ] [ 1 ] [ 1 ] , d [ 1 ] [ 2 ] [ 1 ] , d [ 2 ] [ 1 ] [ 1 ] , d [ 2 ] [ 2 ] [ 1 ] ] )

= [1 , 2 , 3 , 4 ] ) ; ;
69 D:= F i l t e r e d (D, d−>Set ( [ d [ 1 ] [ 1 ] [ 3 ] , d [ 1 ] [ 2 ] [ 3 ] , d [ 2 ] [ 1 ] [ 3 ] , d [ 2 ] [ 2 ] [ 3 ] ] )

= [1 , 2 , 3 , 4 ] ) ; ;
70 for i in [ 1 . . Length (D) ] do
71 D[ i ] := [D[ i ] [ 1 ] [ 1 ] ,D[ i ] [ 1 ] [ 2 ] ,D[ i ] [ 2 ] [ 1 ] ,D[ i ] [ 2 ] [ 2 ] ] ;
72 od ;
73 S : = [ ] ;
74 for i in [ 1 . . Length (D) ] do
75 S [ i ] := Flat (D[ i ] ) ;
76 od ;
77
78 return D;
79 end ;
80
81
82
83
84 RowColumnSymmetryGroup := function ( )
85 local g1 , g2 , g3 , g4 , g5 , g6 , g7 , g8 , g9 , G;
86 g1 :=(1 ,5) (2 , 6 ) ( 3 , 7 ) (4 , 8 ) ; ; #Swaps rows 1 and 2
87 g2 :=(9 ,13) (10 ,14) (11 ,15) (12 ,16) ; ; #Swaps rows 3 and 4
88 g3 :=(1 ,9) (2 , 10 ) (3 , 11 ) (4 , 12 ) (5 , 13 ) (6 , 14 ) (7 , 15 ) (8 , 16 ) ; ; #Swaps h o r i z on t a l bands
89 g4 :=(1 ,2) (5 , 6 ) (9 , 10 ) (13 ,14) ; ; #Swaps c o l s 1 and 2
90 g5 :=(3 ,4) (7 , 8 ) (11 ,12) (15 ,16) ; ; #Swaps c o l s 3 and 4
91 g6 :=(1 ,3) (5 , 7 ) (9 , 11 ) (13 ,15) (2 , 4 ) (6 , 8 ) (10 ,12) (14 ,16) ; ; #Swaps v e r t i c a l bands
92 g7 :=(2 ,5) (3 , 9 ) (4 , 13 ) (7 , 10 ) (8 , 14 ) (12 ,15) ; ; #Re f l e c t i on in d iagona l
93 g8 :=(3 ,8) (2 , 12 ) (1 , 16 ) (6 , 11 ) (5 , 15 ) (9 , 14 ) ; ; #Re f l e c t i on in d iagona l
94 g9 :=(1 ,13 ,16 ,4 ) ( 2 , 9 , 15 , 8 ) (3 , 5 , 14 , 12 ) (6 , 10 , 11 , 7 ) ; ; #Rotat ion by 90
95 G:=Group ( g1 , g2 , g3 , g4 , g5 , g6 , g7 , g8 , g9 ) ; ;
96 return G;
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97 end ;
98
99
100 ac t i on := function (S , h)
101 local l , i , new_l ;
102 l := SquareAsList (S) ;
103 new_l := [ ] ;
104 for i in [ 1 . . Length ( l ) ] do
105 new_l [ i ] := ShallowCopy ( l [ i ^h ] ) ;
106 od ;
107 return ListAsSquare (new_l , Length (S) ) ;
108
109 end ;
110
111
112 act ion_swap_letters := function (S , g )
113 local l , i , new_l ;
114 l := SquareAsList (S) ;
115 new_l := [ ] ;
116 for i in [ 1 . . Length ( l ) ] do
117 new_l [ i ] := ShallowCopy ( l [ i ]^ g ) ;
118 od ;
119 return ListAsSquare (new_l , Length (S) ) ;
120
121 end ;
122
123 ac t i on_d i r e c t := function (S , h)
124 local l , i , new_l ;
125 l := SquareAsList (S) ;
126 new_l := [ ] ;
127 for i in [ 1 . . Length ( l ) ] do
128 new_l [ i ] := ShallowCopy ( ( l [ ( i +4)^h−4])^h) ;
129 od ;
130 return ListAsSquare (new_l , Length (S) ) ;
131
132 end ;
133
134
135
136 # Checks i f the Shidoku x i s a f i x e d po in t o f the group element h
137 IsF ixedPoint := function (x , h)
138 return ac t i on_d i r e c t (x , h)=x ;
139 end ;
140
141 #
142 FixedPoints := function (Y, h)
143 return F i l t e r e d (Y, y−>IsFixedPoint (y , h ) ) ;
144 end ;
145
146
147 BurnsideLemma := function (Y, H)
148 local avg , h , fp ;
149 avg := 0 ;
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150 for h in H do
151 fp := FixedPoints (Y, h) ;
152 i f Length ( fp )>0 then
153 Pr int ( "The␣ element ␣" , h , "␣ f i x e s ␣" , Length ( fp ) , "␣Shidoku␣ g r i d s . \ n" ) ;
154 avg := avg+Length ( fp ) ;
155 f i ;
156 od ;
157 Pr int ( "Hence : ␣ the ␣ average ␣number␣ o f ␣ f i x ed ␣ po in t s ␣ i s ␣" , avg/Order (H) , "\n" ) ;
158 #return avg/Order (H) ;
159 end ;
160
161
162 # Prin t s the g r i d in a nice way
163 Pret tyPr int := function ( x )
164 local i , j ;
165 for i in [ 1 . . Length (x ) ] do
166 for j in [ 1 . . Length (x ) ] do
167 Pr int ( x [ i ] [ j ] , "␣" ) ;
168 od ;
169 i f i<>Length (x ) then Print ( "\n" ) ; f i ;
170 od ;
171 end ;

Defining x and y as the Shidoku grids we wish to compare,

x := [ [ 1 , 2 , 3 , 4 ] , [ 3 , 4 , 1 , 2 ] , [ 2 , 1 , 4 , 3 ] , [ 4 , 3 , 2 , 1 ] ] ;
y := [ [ 1 , 2 , 3 , 4 ] , [ 3 , 4 , 1 , 2 ] , [ 2 , 3 , 4 , 1 ] , [ 4 , 1 , 2 , 3 ] ] ;

the command AreEssentiallyDifferent(x,y); can be used to return the following output:

gap> Ar eE s s e n t i a l l yD i f f e r e n t (x , y ) ;
The square

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

and the square

1 2 3 4
3 4 1 2
2 3 4 1
4 1 2 3

ARE e s s e n t i a l l y d i f f e r e n t .
true
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